Wednesday, April 10, 2013

Neutrons help explain ozone poisoning and links to thousands of premature deaths each year

Apr. 9, 2013 ? A research team from Birkbeck, University of London, Royal Holloway University and Uppsala University in Sweden, have helped explain how ozone causes severe respiratory problems and thousands of cases of premature death each year by attacking the fatty lining of our lungs.

In a study published in Langmuir, the team used neutrons from the Institut Laue-Langevin in Grenoble and the UK's ISIS Neutron Source to observe how even a relatively low dose of ozone attacks lipid molecules that line the lung's surface. The presence of the lipid molecules is crucial for the exchange of oxygen and carbon dioxide, as they prevent the wet surfaces of the lung from collapsing.

Ozone is mostly produced in the upper atmosphere as the sun's UV light splits oxygen molecules, but it can also form at ground level from burning fossil fuels. It is known to harm our respiratory systems and is linked to asthma, bronchitis, heart attacks, and other cardiopulmonary problems. A recent study published by the Bloomberg School's Department of Environmental Health Sciences found that stricter ozone emission regulations in the US could prevent over a thousand premature deaths and over a million complaints of respiratory problems each year [1].

However, it remains unclear how exactly ozone causes this damage. One theory is it attacks the lung's surface layers which consist of a layer of water sitting below a mixture of fatty molecules called lipids and proteins that are together known as lung surfactant. The surfactant aids the exchange of oxygen and carbon dioxide during breathing. It does this by reducing surface tension, i.e. the attraction that molecules feel for each other, in the liquid surface layer above, causing these fluids to spread out and provide a greater surface area for gas exchange.

Critically, a lack of adequate surfactant, a deficiency often found naturally in babies born prematurely, can produce similar respiratory health complaints to those mentioned above, even resulting in death in some cases.

This link was further established in 2011 by the same team from Birkbeck who demonstrated that ozone reacted very strongly with the lipid layer, damaging it. However, what exactly is going on and how these reactions might impede the surfactant from doing its job was still unclear.

To investigate further Dr Katherine Thompson from Birkbeck and her team ran neutron reflection studies at the Institut Laue-Langevin in Grenoble and ISIS Neutron Source in Oxfordshire on an artificial lipid monolayer, created to mimic the lung surface. The lipid layer was exposed to a dilute gaseous mixture of ozone, and changes in its structure or surface tension were studied in real time. The concentration of ozone was around 100 parts per billion (0.1 ppm), equivalent to what you might get in a polluted city in the summer.

The use of neutrons meant that Dr Thompson could label different parts of the sample using deuteration, a process whereby a heavier isotope of hydrogen, deuterium, is introduced and contrasted with undeuterated samples to pick out the location of hydrogen atoms. This allowed them to monitor different parts of the molecule separately as they reacted with the ozone.

Using this technique Dr Thompson's team showed that one of the lipid's upwards-facing tails, known as the C9 portion, breaks off during the ozone degradation and is lost from the surface completely. The portion still attached to the lipid head then re-orientates itself and penetrates into the air?water interface. The loss of the C9 portion causes an initial decrease in surface tension which temporarily increases surface area for gas exchange and efficient respiration. However this effect is short-lived as the penetration of the rest of the molecule into the water results in a slow but pronounced rise in surface tension, producing an overall net increase.

Note:

1. Health Benefits from Large-Scale Ozone Reduction in the United States -- Berman et all, Oct 2012

2. Royal Holloway is one of the UK's leading universities. We have a distinguished history of world-changing research and innovative teaching, with an international outlook. Our close-knit community enables students to benefit from a personalised experience, with staff collaborating across facilities to enhance health, science, culture and security on a global scale. Set in 135 acres of parkland in Surrey, our campus is recognised as one of the most beautiful in the world, and the pioneering spirit of our founders continues to inspire teaching and research today.

3. Birkbeck, University of London, is a world-class research and teaching institution, a vibrant centre of academic excellence and London's only specialist provider of evening higher education.Our flexible approach attracts many non-traditional students and we offer them the opportunity to fit university studies around busy lives. Birkbeck encourages applications from students without traditional qualifications and it has a wide range of programmes to suit every entry level.18,000 students study at Birkbeck every year. They join a community that is as diverse and cosmopolitan as London's population.

4. About ILL and ISIS -- the Institut Laue-Langevin (ILL) in Grenoble and ISIS at the Rutherford Appleton Laboratory in the UK are international research centres which have led the world in neutron scattering science and technology. They operate intense neutron sources, feeding beams of neutrons to a suites of 30 to 40 high-performance instruments that are constantly upgraded. Each year 1,200 researchers from over 40 countries visit each of ISIS and ILL to conduct research into condensed matter physics, (green) chemistry, biology, nuclear physics, and materials science. The UK, along with France and Germany is an associate and major funder of the IL; ISIS is owned and operated by the UK Science and Technology Facilities Council.

5. STFC -- The Science and Technology Facilities Council is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar.

The next step for Katherine and her colleagues is to look at adapting the model, to represent the condition of people with various forms of chronic respiratory problem and attempt to understand why ozone seems to affect them worse than others.

Dr Katherine Thompson, Birkbeck, University of London said: "We are not completely sure what causes the second stage of tension increase. The damaged lipid might be slowly dissolving in the water and leaving the interface entirely, or a slow reaction might be occurring that is damaging another part of the lipid not directly attacked by ozone. What we can say is that the slow increase in surface tension that occurs as a result of the ozone exposure would certainly damage the ability of our lungs to process oxygen and carbon dioxide, and could account for the respiratory problems associated with ozone poisoning."

Dr Martin King from Royal Holloway University said: "This important study shows how a key air pollutant has a detrimental effect on the human lung and could impair breathing. It is essential that a complex mixture of air pollutants -- for example Ozone and nitrogen oxides -- and the effect of inhaled particulate matter on the lung, is looked at next."

Dr Richard Campbell from the Institut Laue-Langevin said: "Neutrons are an ideal tool for studying biological materials, particularly their reactions and interactions on surfaces and across interfaces. They are highly sensitive to lighter atoms such as carbon, hydrogen and oxygen that make up these organic molecules and isotopic labelling can be used to determine the structure and composition of interfacial layers. As one of the world's brightest neutron sources, the ILL has a long history of modelling important micro-scale processes that take place inside our bodies and providing ground-breaking insights that inform the next generation of treatments."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Royal Holloway, University of London, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

Source: http://feeds.sciencedaily.com/~r/sciencedaily/most_popular/~3/P39my8Nuvq4/130409211934.htm

Prince Harry Vegas Melky Cabrera Mayim Bialik Rich Kids of Instagram felix hernandez julia child Ron Palillo

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.